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Abstract

The gaseous media of galaxy clusters and cosmic filaments, which
constitute most of the baryonic matter in the universe, are highly dy-
namic. The media are also probably turbulent, although the turbulence
properties are poorly known. The gas is highly rarefied, essentially
fully ionized plasma. Observational evidence suggests intracluster me-
dia (ICMs) are magnetized at some level. ICM seed fields have several
possible origins; the observed fields are likely the result of turbulence
in the ICM. We are engaged in a simulation study designed to under-
stand in this context how very weak initial magnetic fields evolve in
driven turbulence. We find that the magnetic fields eventually evolve
toward equipartition levels with the vortical, solenoidal kinetic energy
in the turbulence. As they do so, the topology of the field structures
transition from filamentary forms into ribbonlike structures in which
the field orientations are laminated with vorticity structures.

1 Introduction

Most of the baryonic matter in the universe is outside stars and galaxies. It
exists primarily as very diffuse plasma in large scale cosmic filaments and
galaxy clusters that have formed and are still forming through gravitational
collapse of primordial density fluctuations. Both theory and observation
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have established that the diffuse intracluster media (ICMs) are highly dy-
namical environments with active “weather” driven by ongoing accretion
and merging activity, as well as large energy inputs from starburst-driven
galactic winds and very fast outflows from active galaxies. The ICMs are
criss-crossed by complex winds at a fair fraction of the local sound speed that
generate weak-to-moderate-strength shocks, contact discontinuities (known
in the community as “cold fronts”), and bulk shear. Provided Reynold num-
bers are large enough, such flows should become turbulent. Turbulence is
clearly manifested in simulations of cluster formation, and there is growing
observational support as well. For instance, random flow velocities appear to
have reduced resonance scattering of the 6.7 keV Fe emission line [1] of the
ICM in the Perseus cluster. Thermal pressure fluctuations in the Coma clus-
ter are consistent with Kolmogorov turbulence [2]. Patchy Faraday rotation
patterns looking through several clusters also indicate highly disordered and
possibly turbulent magnetic field structures [3], as does the absence of large
scale polarization in the diffuse synchrotron emission of radio halos seen in
a growing number of cluster cores (e.g., [4]). Direct information about the
existence of turbulence in cosmic filaments is currently lacking, although
there are theoretical reasons to expect the diffuse media of filaments also to
develop turbulence (e.g., [5]).

Understanding turbulence in these environments is important for many
reasons. Turbulent pressure provides support against gravity and hence is
relevant to cluster mass estimates made from X-ray measurements. Tur-
bulence transports entropy, metals and cosmic rays—all important cluster
evolution diagnostics. It transports and amplifies magnetic fields (the focus
of this paper), which in turn control the viscosity, resistivity and thermal
conduction in the diffuse media, as well as the propagation and accelera-
tion of cosmic rays. An extensive literature on turbulence exists, including
MHD turbulence (see, e.g., [6] for a review). Much of the astrophysical
MHD turbulence literature (e.g., [7]) seeks to understand galactic, interstel-
lar media, where the magnetic fields are relatively stronger (β = Pg/PB ∼ 1)
than in cluster and filament media (β >> 1). The simulation effort behind
this report focuses on driven MHD turbulence in situations where the ini-
tial magnetic field is very weak and so is especially relevant to clusters and
filaments (see [8] for an early report from this study).
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2 Generation of Turbulence and Magnetic Fields

2.1 Turbulence and Vorticity

The environments of interest are commonly filled with strong drivers of
gas motion. Turbulence describes motions possessing significant random
velocities. The random velocity field can include both compressive (∇·~u 6= 0)
and vortical, or solenoidal (~ω = ∇×~u 6= 0), components, where ~ω is vorticity.
Significant amplification of magnetic fields depends on the presence of flow
stretching and therefore on the vortical velocity component (see equation
3). Thus, understanding MHD turbulence begins with an identification of
the sources of vorticity and the manner in which vorticity evolves.

The equation of motion for a viscous fluid can be expressed in terms of
vorticity as

∂~ω

∂t
= ∇× (~u× ~ω) + ν∇2~ω +

1

ρ2
∇ρ×∇P, (1)

where ν is the kinetic viscosity (assumed constant and isotropic) [9]. In an
ideal (ν = 0) flow in which the baroclinic term, ∇ρ × ∇P , vanishes, the
net vorticity of a fluid element is conserved (d/dt

∫
~ω · d~a = 0). When the

pressure and density gradients are not aligned, such as in colliding flows,
vorticity can be added through this term, while viscosity leads to decay
of vorticity. In truly isothermal flows, such as those in the simulations we
report here, the baroclinic term will always be zero, since P ∝ ρ everywhere.

On the other hand a steady, uniform flow (~ω = 0) obliquely crossing a
curved shock surface will exit downstream with a postshock vorticity given
by Crocco’s theorem [10],

~ωcs =
(ρ2 − ρ1)2

ρ1ρ2
K~U1 × n̂, (2)

with ρ1 and ρ2 the upstream and downstream gas densities, respectively;
~U1 the upstream flow velocity in the shock rest frame; K the shock surface
curvature tensor; and n̂ the shock normal unit vector. Crocco’s theorem
depends only on mass and momentum conservation at the shock (i.e., on
differential flow refraction), so it applies even in isothermal shocks, where
baroclinicity is absent. We will explore this vorticity source explicitly be-
low in simulations of compressible, isothermal turbulence driven entirely by
sound waves.

Turbulence develops as motions driven on a scale, Ld, cascade into
chaotic motions on smaller scales, provided the viscous dissipation scale,
lvisc, is much smaller than Ld. In our context the driving scale is generally
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comparable to such things as the curvature radius of a shock, the size of a
cluster substructure core, or the scale of an active galaxy or starburst wind
outflow. These likely range for clusters from ∼ tens of kpc to ∼ hundreds
of kpc. In filaments even larger driving scales are likely. The appropriate
viscous dissipation scales in these media are far less clear. They are hot, ion-
ized, and very diffuse, so Coulomb collisions are ineffective. The associated

mean free path, λCoul ∼ 1 kpcT
5/2
keV/(n−3uth,100), ranges from tens of pc to

tens of kpc in these environments. Here, TkeV is the plasma temperature in
keV, n−3 is the density in 10−3cm−3, and uth,100 is the ion thermal velocity
in 100 km/s. The corresponding viscosity, ν ∼ uthλCoul is very large, and
associated the Reynolds numbers, Re ∼ LdU/ν ∼ few × 10, rather small
with U ∼ uth the flow velocity on the driving scale. Hence the viscous dissi-

pation scale due to Coulomb scattering alone, lvisc ∼ Ld/R
3/4
e , would range

from fractions of a kpc in cool cluster cores to at least several tens of kpc in
cluster outskirts.

On the other hand, the presence of even a weak magnetic field may
reduce the dissipation scale as a result of gyroscale instabilities, such as the
firehose and mirror instabilities. Then the scattering of particles by the
resulting magnetic fluctuations could reduce the particle mean free paths
and so also the viscous dissipation scale [11]. The detailed picture is still
uncertain, however. We assume below that the physical dissipation scale
is at least as small as the effective dissipation scale of our “ideal fluid”
simulations, namely, on the order of the grid resolution. In cluster contexts
this would correspond roughly to kpc dissipation scales.

2.2 Magnetic Field

The magnetic field evolution in a conducting medium is governed by the
induction equation. For a generalized Ohm’s law in the MHD approximation
this is (e.g., [12, 13])

∂ ~B

∂t
= ∇× (~u× ~B) + η∇2 ~B − 1

en2e
∇ne ×∇Pe, (3)

where η is the resistivity (assumed constant and isotropic) and ne and Pe are
the electron density and pressure, respectively. The last term in equation 3,
which is analogous to the baroclinic source term for vorticity, comes from
different electron and ion mobilities. It is the so-called Biermann battery
source term for magnetic fields frequently invoked as a contributor to the
generation of cosmic magnetic fields, especially at curved shocks. It is not
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commonly included explicitly in MHD simulations and not in those discussed
here (but see, e.g., [5, 12])

The first term on the right of equation 3 accounts for the important
“stretch-fold” mechanism that leads to “small scale” or “turbulent” dy-
namo field amplification. The resistance term controls field dissipation.
The resistive dissipation scales, lres, are also uncertain in these environ-

ments. In a turbulent flow with η << ν, we would have lres ∼ Ld/R
1/2
m ,

where RM ∼ LdU/η is the magnetic Reynolds number. It is possible that
the magnetic Prandtl number, Pr,m ≡ Rm/Re = ν/η & 1 in the media
of interest here. To illustrate, if one assumes Coulomb scattering controls
both dissipative processes, Pr,m >> 1 (e.g., [14]). In the simulations re-
ported below, the resistivity, like the viscosity, has numerical origins, so
that the resistive dissipation scale is also similar to the grid resolution; thus,
Pr,m ∼ 1.

3 Simulation of Cosmic-Scale MHD Turbulence

Isolating turbulence from coherent “weather” in the complex and inhomo-
geneous flows associated with clusters and filaments is difficult (but see,
e.g., [5, 17]). As an alternative tool to explore some of the basic physics we
are conducting a high-resolution simulation study of the evolution and satu-
ration of driven 3D MHD turbulence in computational domains that resem-
ble these media. Since these media, while magnetized, are not magnetically
dominated, we focus on turbulence developed with initially very weak mag-
netic fields. The full study considers both compressible and incompressible
fluids as well as ideal and nonideal media with a range of magnetic Prandtl
numbers. We discuss here, however, only some cases of ideal, compressible
flows in isothermal media. The simulations used an isothermal ideal MHD
code that is an updated version of the code presented in [15]. Initially the
medium has uniform density, ρ = 1, gas pressure, Pg = 1 (hence, isothermal
sound speed, cs = 1), and uniform magnetic field with β = Pg/PB = 106.

The cubic box has dimensions L0 = Lx = Ly = Lz = 10 with periodic
boundaries. The box sound crossing time is thus 10 units. Turbulence is
driven by velocity forcing drawn from a Gaussian random field determined
with a power spectrum, Pk ∝ k6 exp(−8k/kpeak), where kpeak = 2k0 (k0 =
2π/L0), and added at every ∆t = 0.01L/cs. The power spectrum peaks
around kd ≈ 1.5k0, or around a scale, Ld ≈ 2/3L0. The amplitude of the
perturbations is tuned so that uRMS ∼ 0.5 or Ms ≡ uRMS/cs ∼ 0.5 at
saturation, close to what results in full cluster simulations (e.g., [5, 16, 17].
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Figure 1: Left: Evolution of kinetic, EK , and magnetic, EB, energies in
simulations of ideal, compressible solenoidally driven (fs = 1) MHD turbu-
lence for two grid resolutions. Right: Power spectra, E(k), of kinetic and
magnetic energies at t = 20 and t = 130 in the 20483 zone simulation.

Using a Helmholtz decomposition, we separate the driving velocity field
into solenoidal (∇· ~δu = 0) and compressive (∇× ~δu = 0) components. The
fraction of the total driving kinetic energy put into solenoidal motions is
designated by the symbol fs.

Results are presented here for purely solenoidal, fs = 1, and, for com-
parison, purely compressive, fs = 0, driving. Turbulence driving in a cosmic
structure formation context will be somewhere between these two extremes.
They are useful, however, in allowing us to focus on the the connection be-
tween magnetic field amplification and vorticity on the one hand and on
the possible roles for shocks on the other hand. Our preliminary analysis
of intermediate cases, 0 < fs < 1, indicates behaviors that one might rea-
sonably intuit from the two extremes. For the fs = 1 case we show results
from simulations carried out on both 10243 and 20483 grids. While not fully
converged, they agree well in their general properties. For compressive driv-
ing, fs = 0, we present results from a 5123 simulation, which is our highest
resolution run to date for that case. The turbulent kinetic energy balance
seems relatively well converged at this resolution, as well as the kinetic en-
ergy power spectra on large scales. The magnetic field properties may not
yet be converged, for reasons outlined below.

Our setup gives a characteristic timescale of bulk motion, td = Ld/uRMS ≈
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Figure 2: Magnetic energy density distributions in solenoidally driven MHD
turbulence. Left: Log(EB) at t = 20 in the 20483 simulation. Right:
Log(EB) at t = 130. “Cool” is weak; “hot” is strong.

15. In that time the motions in both cases spawn some form of hydrody-
namical turbulence with power from the driving scale down to the viscous
dissipation scale (a few grid zones). Consider first the case with solenoidal
driving, illustrated in Fig. 1. It shows that the mean turbulent kinetic en-
ergy density, EK , grows and peaks at t ∼ td, with a value corresponding
to uRMS ∼ 2/3. Subsequently, EK slowly declines as the mean magnetic
energy density, EB, grows. the kinetic energy power spectrum, EK(k), at
t = 20, also shown in Fig. 1, exhibits a peak at k/k0 ∼ 2, near the driv-
ing scale. It takes a Kolmogorov-like, inertial form, EK(k) ∝ k−5/3 for
k/k0 < 50. By this time energy has cascaded from the driving scales far
enough that the motions, with still-negligible magnetic backreaction, are
reasonably described as classical, hydrodynamical turbulence over a modest
range of scales. The kinetic energy is predominantly solenoidal; the ratio
of solenoidal to compressive kinetic energies at saturation, EK,s/EK,c ∼ 15.
Consequently, the compressive motions play almost no role in this case. In-
deed, the properties of analogous incompressible turbulence simulations are
similar.

Once turbulence develops, both vorticity and magnetic energies undergo
inverse cascades from small to large scales, with the coherence lengths of
their filaments growing accordingly. This situation is evident for the mag-
netic field in the power spectrum changes in Fig. 1. The inverse cascade of
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magnetic energy can be understood as follows. The field is wrapped more
quickly around smaller-scale eddies because the eddy turn over time varies
as tl ∝ l2/3. Maxwell stresses, ∝ (∇×B)×B, then feed back on the kinetic
turbulence, causing significant modifications in the fluid motions, thus sat-
urating the magnetic field growth on a given scale, l, when EB(l) ∼ EK(l).
Since the turbulent kinetic energy on a scale EK(l) ∝ l2/3, the saturation
scale of the magnetic turbulence should evolve over time as lB ∝ t3/2, while
the magnetic energy grows as EB ∝ t, both consistent with Fig. 1. Even-
tually, as lB approaches the outer scale of the kinetic turbulence, Ld, the
scalings break down, and turbulence reaches saturation where the ratio of the
total magnetic to kinetic energy is EB/EK ∼ 2/3 (see also, e.g., [18, 19, 20]).
Neither the kinetic nor the magnetic energy power spectra, nor their sum,
are well described as Kolmogorov in this saturation state.

We also emphasize an interesting topological transformation in the flow
structure as turbulence proceeds through the linear growth to the satura-
tion stage. Figure 2 displays the different topologies of the magnetic flux
structures at t = 20 and t = 130. At the earlier time the field is organized
into individual filaments. At the later time those filaments have evolved into
striated, ribbon-like forms (see also [19]). Close examination reveals the rib-
bons to be laminated, with magnetic field and vorticity interleaved through
each cross section on scales of the order the dissipation length. In hydro-
dynamical turbulence such ribbons would be unstable, but the interplay of
vorticity and magnetic field seems to stabilize them in MHD turbulence.

The compressively driven turbulence, fs = 0, develops different proper-
ties, as illustrated in Fig. 3. The plots show solenoidal, compressive, and
magnetic power spectra in this case at t = 625 (right side), and for com-
parison the same power spectra in the previously discussed, fs = 1 case at
t = 130 (left side). The fs = 0 kinetic energy spectra resemble a Burg-
ers scaling, EK(k) ∝ k−2, rather than a Kolmogorov scaling. That steeper
scaling results from the dominance of shocks in the turbulence (e.g., [21]),
despite the fact that the rms velocities in this turbulent flow are subsonic.
It is not surprising, then, that the turbulent kinetic energy is predominantly
in compressive modes, with the energy ratio, EK,s/EK,c ∼ 1/15, the inverse
of our fs = 1 result.

Given the absence of any vorticity in the driving and the absence of any
baroclinic vorticity sources, it is remarkable that there are vortical motions
at all. The vorticity in this case is created at curved shocks and especially
intersecting shocks in accordance with Crocco’s theorem (equation 2). This
effect can be seen clearly in the simulation, especially early on, when the
motions are essentially all compressive. Figure 4 shows a small, planar slice
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Figure 3: Energy power spectra in isothermal MHD turbulence with
solenoidal driving (fs = 1, left) and compressive driving (fs = 0). Ki-
netic energy in solenoidal motions, EK,s(k), compressive motions, EK,c(k),
their sum, EK,t(k), along with magnetic energy, EB(k), are shown.

from this simulation at t = 5, just as intersecting shock structures are first
forming. The associations between shock structures, vorticity, and relatively
stronger magnetic fields are obvious.

Since the magnetic field amplification depends on the vortical motions,
which are an order of magnitude smaller in the fs = 0 case at hydrody-
namical saturation than in the fs = 1 case, it is not surprising that the
magnetic field grows much more slowly and is much weaker in the compres-
sively driven case. In the fs = 1 case the linear growth of the magnetic
field saturations around t ∼ 80 − 100. In contrast, for the fs = 0, com-
pressive driving case, the magnetic field is still in the linear growth phase
at the end of the simulation, t = 625. The ratio of magnetic to solenoidal
energies is EB/EK,s ∼ 1/4, still shy of saturation. Just as for the fs = 1
case, saturation of magnetic energy should develop when EB/EK,s ∼ 2/3.
This delayed and reduced growth is made more exaggerated compared with
the steeper kinetic energy power spectrum, since small-scale eddy turnover
times (tl ∝ l/u(l)) are longer with Burgers scaling. This also makes the
magnetic field generation more sensitive to the grid resolution, since it de-
pends on an inverse cascade, and so depends on solenoidal power on small
scales.
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Figure 4: Slice at t = 5 in the fs = 0 simulation, revealing generation
of vorticity and associated amplification of magnetic fields at intersecting,
curved shock surfaces. Left: ∇ · ~u, identifying shock structures. Center:
magnitude of vorticity, |~ω|. Right: Magnetic field strength.

4 Conclusion

Processes such as shocks and high-speed outflows are likely to drive tur-
bulence in the diffuse media in galaxy clusters and cosmic filaments. The
detailed physics is difficult to model analytically. However, simulations al-
low us to explore it in some detail. Magnetic fields are integral components,
both in the microphysics of the media and in large-scale dynamics, even
though the fields themselves are not likely to be dynamically dominant.
The magnetic fields also potentially provide critical diagnostics of the media
and their dynamical states. The development of the magnetic fields through
turbulence is likely, although the details of that development depend again
on the microphysics (which itself is controlled by the magnetic fields) and
the processes that drive the turbulent motions. Growth of an initially very
weak field to saturated balance with vortical turbulent motions requires
timescales long compared with the hydrodynamical turbulent timescale.
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